Periodic Adaptive Branch Prediction and its Application in Superscalar Processing in Prolog
نویسندگان
چکیده
Branch instructions create barriers to instruction prefetching, greatly reducing the fine-grained parallelism of programs. Branch prediction is a common method for solving this problem. We first present four lemmata in this paper describing the relationships among branch prediction hit rate and system performance, hardware efficiency, and branch prediction overhead. We then propose a branch prediction method called PAM (Periodic Adaptive Method). An abstract model and detailed implementation of PAM are described. PAM's prediction hit rate as measured by 10 Prolog benchmark programs is 97%. When implemented in a superscalar Prolog system, PAM enhances the degree of system parallelism by 68.8%. PAM can be applied to languages and applications other then the Prolog system we used in this study.
منابع مشابه
Countermeasures for the Simple Branch Prediction Analysis
Branch Prediction Analysis has been proposed as an attack method to obtain key bits from a cryptographic application. In this report, we put forth several solutions to avoid or prevent this attack. The reported countermeasures require only minimal hardware support that is commonly available in modern superscalar processors.
متن کاملDelayed Branches Versus Dynamic Branch Prediction in a High- Performance Superscalar Architecture
While delayed branch mechanisms were popular with the designers of RISC processors, most superscalar processors deploy dynamic branch prediction to minimise run-time branch penalties. We propose a generalised branch delay mechanism that is more suited to superscalar processors. We then quantitatively compare the performance of our delayed branch mechanism with run-time branch prediction, in the...
متن کاملAlternative Implementations of Two Level Adaptive Branch Prediction
As the issue rate and depth of pipelining of high performance Superscalar processors increase, the importance of an excellent b r a n c h predictor becomes more vital to delivering the potential performance of a wide-issue, deep pipelined microarchitecture. We propose a new dynamic branch predictor (Two-Level Adaptive Branch Prediction) that achieves substantially higher accuracy than any other...
متن کاملAlternative Implementations of Two - Level Adaptive Branch
As the issue rate and depth of pipelining of high performance Superscalar processors increase, the importance of an excellent branch predictor becomes more vital to delivering the potential performance of a wide-issue, deep pipelined microarchitecture. We propose a new dynamic branch predictor (Two-Level Adaptive Branch Prediction) that achieves substantially higher accuracy than any other sche...
متن کاملBranch Prediction using Advanced Neural Methods
Among the hardware techniques, two-level adaptive branch predictors with two-bit saturating counters are acknowledged as best branch predictors. They accomplish very competitive performance at low hardware cost. However, with the rapid of evolution of superscalar processors, the more accurate predictors are desired for more correct branch prediction as one of speculation method. They will lead ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. J.
دوره 38 شماره
صفحات -
تاریخ انتشار 1995